Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

5-2004

Journal or Book Title

Journal of Physical Chemistry A

Volume

108

Issue

21

First Page

4707

Last Page

4719

DOI

10.1021/jp049839h

Abstract

The dissociation energy curves of low-lying spin-mixed states for Group 5 hydrides (VH, NbH, and TaH), as well as Group 3 hydrides (ScH, YH, and LaH), have been calculated by using both effective core potential (ECP) and all-electron (AE) approaches. The two approaches are based on the multiconfiguration self-consistent field (MCSCF) method, followed by second-order configuration interaction (SOCI) calculations:  the first method employs an ECP basis set proposed by Stevens and co-workers (SBKJC) augmented by a set of polarization functions, and spin−orbit coupling effects are estimated with a one-electron approximation, using effective nuclear charges. The second method employs a double-ζ basis set developed by Huzinaga (MIDI) and three sets of p functions are added to both transition element and hydrogen and one set of f functions is also added to the transition element. The relativistic elimination of small components (RESC) scheme and full Breit−Pauli Hamiltonian are employed in the AE approaches to incorporate relativistic effects. The present paper reports a comprehensive set of theoretical results including the dissociation energies, equilibrium distances, electronic transition energies, harmonic frequencies, anharmonicities, and rotational constants for several low-lying spin-mixed states in the hydrides, filling a considerable gap in available data for these molecules. Transition moments are also computed among the spin-mixed states, and qualitative agreement is obtained for Group 3 hydrides in comparison with the experimental results reported by Ram and Bernath. Peak positions of emission spectra in Group 5 hydrides are also predicted.

Comments

Reprinted (adapted) with permission from Journal of Physical Chemistry A 108 (2004): 4707, doi:10.1021/jp049839h. Copyright 2004 American Chemical Society.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS