Document Type
Article
Publication Date
2005
Journal or Book Title
Physical Review B
Volume
71
Issue
14
First Page
144203
DOI
10.1103/PhysRevB.71.144203
Abstract
The adhesion and friction force properties between a tenfold Al‐Ni‐Co decagonal quasicrystal and a titanium nitride (TiN)-coated tip were investigated using an atomic force microscope in ultrahigh vacuum. To suppress the strong chemical adhesion found in the clean quasicrystal surfaces, the sample was exposed to ethylene that formed a protective passivating layer. We show that the deformation mechanism of the tip-substrate junction changes from elastic to inelastic at a threshold pressure of 3.8 to 4.0 GPa. Images of the indentation marks left above the threshold pressure indicate the absence of new steps, and indicate that surface damage is not accompanied by formation of slippage planes or dislocations, as found in plastically deforming crystalline materials. This is consistent with the lack of translational periodicity of quasicrystals. The work of adhesion in the inelastic regime is five times larger than in the elastic one, plausibly as a result of the displacement of the passivating layer. In the elastic regime, the friction dependence on load is accurately described by the Derjaguin-Müller-Toporov (DMT) model, consistent with the high hardness of both the TiN tip and the quasicrystal sample. Above the threshold pressure, the friction versus load curve deviates from the DMT model, indicating that chemical bond formation and rupture contribute to the energy dissipation.
Copyright Owner
American Physical Society
Copyright Date
2005
Language
en
File Format
application/pdf
Recommended Citation
Park, Jeong Young; Ogletree, D. F.; Salmeron, M.; Ribeiro, R. A.; Canfield, Paul C.; Jenks, Cynthia J.; and Thiel, Patricia A., "Elastic and inelastic deformations of ethylene-passivated tenfold decagonal Al-Ni-Co quasicrystal surfaces" (2005). Chemistry Publications. 46.
https://lib.dr.iastate.edu/chem_pubs/46
Included in
Biological and Chemical Physics Commons, Materials Science and Engineering Commons, Physical Chemistry Commons
Comments
This article is from Physical Review B 71, no. 14 (2005): 144203, doi:10.1103/PhysRevB.71.144203.