Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

2006

Journal or Book Title

Journal of Chemical Physics

Volume

125

First Page

1

Last Page

9

DOI

10.1063/1.2378767

Abstract

The effective fragment potential (EFP) method is an ab initio based polarizable classical method in which the intermolecular interaction parameters are obtained from preparative ab initiocalculations on isolated molecules. The polarization energy in the EFP method is modeled with asymmetric anisotropic dipole polarizabilitytensors located at the centroids of localized bond and lone pair orbitals of the molecules. Analytic expressions for the translational and rotational gradients (forces and torques) of the EFP polarization energy have been derived and implemented. Periodic boundary conditions (the minimum image convention) and switching functions have also been implemented for the polarization energy, as well as for other EFP interaction terms. With these improvements, molecular dynamics simulations can be performed with the EFP method for various chemical systems.

Comments

The following article appeared in Journal of Chemical Physics 125: 194103, and may be found at doi:10.1063/1.2378767.

Rights

Copyright 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS