Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

2007

Journal or Book Title

Journal of Chemical Physics

Volume

127

First Page

1

Last Page

6

DOI

10.1063/1.2778419

Abstract

The recently developed [P. Piecuch and M. Wloch, J. Chem. Phys.123, 224105 (2005)] size-extensive left eigenstate completely renormalized (CR) coupled-cluster (CC) singles (S), doubles (D), and noniterative triples (T) approach, termed CR-CC(2,3) and abbreviated in this paper as CCL, is compared with the full configuration interaction (FCI) method for all possible types of single bond-breaking reactions between C, H, Si, and Cl (except H2) and the H2SiSiH2 double bond-breaking reaction. The CCL method is in excellent agreement with FCI in the entire region R=1–3Re for all of the studied single bond-breaking reactions, whereR and Re are the bond distance and the equilibrium bond length, respectively. The CCL method recovers the FCI results to within approximately 1mhartree in the region R=1–3Reof the H–SiH3, H–Cl, H3Si–SiH3, Cl–CH3, H–CH3, and H3C–SiH3bonds. The maximum errors are −2.1, 1.6, and 1.6mhartree in the R=1–3Re region of the H3C–CH3, Cl–Cl, and H3Si–Clbonds, respectively, while the discrepancy for the H2SiSiH2 double bond-breaking reaction is 6.6 (8.5)mhartree at R=2(3)Re. CCL also predicts more accurate relative energies than the conventional CCSD and CCSD(T) approaches, and the predecessor of CR-CC(2,3) termed CR-CCSD(T).

Comments

The following article appeared in Journal of Chemical Physics 127 (2007): 174106, and may be found at doi:10.1063/1.2778419.

Rights

Copyright 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS