Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

2008

Journal or Book Title

Journal of Chemical Physics

Volume

129

First Page

1

Last Page

8

DOI

10.1063/1.2992049

Abstract

A quantum mechanics/molecular mechanics (QM/MM) type of scheme is employed to calculate the solvent-induced shifts of molecular electronic excitations. The effective fragment potential (EFP) method was used for the classical potential. Since EFP has a density dependent functional form, in contrast with most other MM potentials, time-dependent density functional theory (TDDFT) has been modified to combine TDDFT with EFP. This new method is then used to perform a hybrid QM/MM molecular dynamics simulation to generate a simulated spectrum of the n→π∗ vertical excitation energy of acetone in vacuum and with 100 water molecules. The calculated watersolvent effect on the vertical excitation energy exhibits a blueshift of the n→π∗ vertical excitation energy in acetone (Δω1=0.211 eV), which is in good agreement with the experimental blueshift.

Comments

The following article appeared in Journal of Chemical Physics 129 (2008): 144112, and may be found at doi:10.1063/1.2992049.

Rights

Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS