Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

2008

Journal or Book Title

Journal of Chemical Physics

Volume

129

First Page

1

Last Page

13

DOI

10.1063/1.2987712

Abstract

Improvements in the manner in which the potential energy surface (PES) is generated in the vibrational self-consistent field (VSCF) method have been implemented. The PES can now be computed over a flexible range of displacements and following normal mode displacement vectors expressed in internal rather than Cartesian coordinates, leading to higher accuracy of the calculated vibrational frequencies. The coarse-grained parallelization of the PES calculations, which is computationally by far the most expensive part of the VSCF method, enables the usage of higher levels of theory and larger basis sets. The new VSCF procedure is discussed and applied to three examples, H+3, HNO2, and HNO3, to illustrate its accuracy and applicability.

Comments

The following article appeared in Journal of Chemical Physics 129 (2008): 164107, and may be found at doi:10.1063/1.2987712.

Rights

Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS