Document Type

Article

Publication Date

12-1-2000

Journal or Book Title

Physical Review B

Volume

62

Issue

21

First Page

14049

Last Page

14060

DOI

10.1103/PhysRevB.62.14049

Abstract

We elucidate the nature of the surface electronic properties of quasicrystalline Al-Pd-Mn. We do this by using photoelectron and Auger electron spectroscopies, and by making a variety of comparisons—across types of bulk samples, and across methods of surface preparation. The main conclusions are these: (i) The narrow Mn 2p3/2core-level line observed in the icosahedral phase is a fingerprint of a suppression in the density of states (a pseudogap) at the Fermi level and is not unique to the quasicrystalline phase. It is also independent of the symmetry of the quasicrystalline surface. The Auger line shape is also affected and may be used as a fingerprint of a pseudogap. (ii) A similarly narrow Fe 2p3/2 core-level line characterizes the icosahedral Al-Cu-Fe quasicrystal, consistent with the expectation that the electronic structure is of general importance in the stabilization of icosahedral phases. (iii) In icosahedral Al-Pd-Mn, the pseudogap of the bulk is not retained up to the surface immediately after fracture, but can be restored by annealing, or by sputter annealing to sufficiently high temperatures. Assuming that the pseudogap reflects an electronic stabilization of the atomic structure, these results suggest that the heat-treated surfaces are more stable than the surface obtained by fracturing at room temperature.

Comments

This article is from Physical Review B 62, no. 21 (2000): 14049–14060, doi:10.1103/PhysRevB.62.14049.

Copyright Owner

American Physical Society

Language

en

File Format

application/pdf

Share

COinS