Campus Units
Chemistry
Document Type
Article
Publication Version
Published Version
Publication Date
3-2010
Journal or Book Title
Journal of Physical Chemistry A
Volume
114
Issue
13
First Page
4609
Last Page
4618
DOI
10.1021/jp912155a
Abstract
High level ab initio calculations of clusters comprised of water, HCl, and ON-ONO2 are used to study nitrosyl chloride (ClNO) formation in gas phase water clusters, which are also mimics for thin water films present at environmental interfaces. Two pathways are considered, direct formation from the reaction of gaseous HCl with ON-ONO2 and an indirect pathway involving the hydrolysis of ON-ONO2 to form HONO, followed by the reaction of HONO with HCl to form ClNO. Surprisingly, direct formation of ClNO is found to be the dominant channel in the presence of water despite the possibility of a competing hydrolysis of ON-ONO2 to form HONO. A single water molecule effectively catalyzes the ON-ONO2 + HCl reaction, and in the presence of two or more water molecules the reaction to form ClNO becomes spontaneous. Direct formation of ClNO is fast at room and ice temperatures, indicating the possible significance of this pathway for chlorine activation chemistry in both the polar and midlatitude troposphere, in volcanic plumes and indoors. The reaction enthalpies, activation energies, and rate constants for all studied reactions are reported. The results are discussed in light of recent experiments.
Copyright Owner
American Chemical Society
Copyright Date
2010
Language
en
File Format
application/pdf
Recommended Citation
Njegic, Bosiljka; Raff, Jonathan D.; Finlayson-Pitts, Barbar J.; Gordon, Mark S.; and Gerber, R. Benny, "Catalytic Role for Water in the Atmospheric Production of ClNO" (2010). Chemistry Publications. 537.
https://lib.dr.iastate.edu/chem_pubs/537
Comments
Reprinted (adapted) with permission from Journal of Physical Chemistry A 114 (2010): 4609, doi:10.1021/jp912155a. Copyright 2010 American Chemical Society.