Morphology of multilayer Ag/Ag(100) films versus deposition temperature: STM analysis and atomistic lattice-gas modeling

Thumbnail Image
Date
2001-01-01
Authors
Stoldt, C.
Layson, Anthony
Bartelt, M.
Thiel, Patricia
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMathematicsChemistry
Abstract

Scanning tunneling microscopy is used to analyze the nanoscale morphology of 25 ML films of Ag deposited on Ag(100) at temperatures (T) between 55 and 300 K. A transition from self-affine growth to “mound formation” occurs as T increases above about 140 K. The roughness decreases with increasing T up until 140 K in the self-affine growth regime, and then increases until about 210 K before decreasing again in the mounding regime. We analyze mounding behavior via a lattice-gas model incorporating: downward funneling of depositing atoms from step edges to lower fourfold hollow adsorption sites; terrace diffusion of adatoms with a barrier of 0.40 eV leading to irreversible island formation in each layer; efficient transport of adatoms along island edges to kink sites; and downward thermal transport of adatoms inhibited by a step-edge barrier of 0.06–0.07 eV along close-packed step edges (but with no barrier along kinked or open steps). This model reasonably recovers the T-dependence of not just the roughness, but also of the mound slopes and lateral dimensions above 190 K. To accurately describe lateral dimensions, an appropriate treatment of the intralayer merging of growing islands is shown to be critical. To describe behavior below 190 K, one must account for inhibited rounding of kinks by adatoms at island edges, as this controls island shapes, and thus the extent of open steps and of easy downward transport. Elsewhere, we describe the low-T regime of self-affine growth (with no terrace diffusion) accounting for a breakdown of the simple downward funneling picture.

Comments

This article is from Physical Review B 63, no. 8 (2001): 085401, doi:10.1103/PhysRevB.63.085401.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2001
Collections