Campus Units

Chemistry, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

4-2011

Journal or Book Title

Journal of Physical Chemistry A

Volume

115

Issue

18

First Page

4574

Last Page

4582

DOI

10.1021/jp112230f

Abstract

Highly accurate excitation spectra are predicted for the low-lying n−π* and π−π* states of uracil for both the gas phase and in water employing the complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT) methods. Implementation of the effective fragment potential (EFP) solvent method with CASSCF and MCQDPT enables the prediction of highly accurate solvated spectra, along with a direct interpretation of solvent shifts in terms of intermolecular interactions between solvent and solute. Solvent shifts of the n−π* and π−π* excited states arise mainly from a change in the electrostatic interaction between solvent and solute upon photoexcitation. Polarization (induction) interactions contribute about 0.1 eV to the solvent-shifted excitation. The blue shift of the n−π* state is found to be 0.43 eV and the red shift of the π−π* state is found to be −0.26 eV. Furthermore, the spectra show that in solution the π−π* state is 0.4 eV lower in energy than the n−π* state.

Comments

This article is from Journal of Physical Chemistry A 115 (2011): 4574, doi:10.1021/jp112230f.

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS