Solvation Dynamics of the Fluorescent Probe PRODAN in Heterogeneous Environments: Contributions from the Locally Excited and Charge-Transferred States

Thumbnail Image
Supplemental Files
Date
2009-08-13
Authors
Adhikary, Ramkrishna
Barnes, Charles
Petrich, Jacob
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Petrich, Jacob
Professor
Research Projects
Organizational Units
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

The coexistence of different excited states with different properties of the same chromophores could have significant consequences for the accurate characterization of solvation dynamics in a heterogeneous environment, such as a protein. The purpose of this work is to study the contributions of the locally excited (LE) and charge-transferred (CT) states of the fluorescent probe molecule 6-propionyl-2-(N,N-dimethylamino)naphthalene (PRODAN) to its solvation dynamics in the heterogeneous environment provided by reverse micelles formed by sodium 1,4-bis-(2-ethylhexyl) sulfosuccinate (AOT)/n-heptane/water. We have found that the LE and CT states of PRODAN solvate on different time scales in reverse micelles (2 and ∼0.4 ns, respectively), consistent with results suggested in the literature, and have concluded that PRODAN’s use as a probe of heterogeneous environments must be used with caution and that, more importantly, the same caution must be exercised with any chromophore capable of emitting from different excited states.

Comments

Reprinted (adapted) with permission from Journal of Physical Chemistry B 113 (2009): 11999, doi: 10.1021/jp905139n. Copyright 2009 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2009
Collections