Intergrowth Compounds in the Zn-Rich Zn−Pd System:  Toward 1D Quasicrystal Approximants

Thumbnail Image
Supplemental Files
Date
2006-01-01
Authors
Gourdon, Olivier
Miller, Gordon
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Miller, Gordon
University Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

A series of γ-brass related structures in the Zn-rich portion of the Zn−Pd phase diagram (ca. 80 at % Zn) is investigated using single-crystal diffraction and tight-binding electronic-structure calculations. Earlier research identified regular arrays of inversion antiphase domains (IAPDs) over a narrow composition range but did not report any characteristic superstructure(s) over the same range. Single-crystal X-ray diffraction allowed for the identification of lattice constants for six “phases” in Zn1-xPdx (0.15 < x < 0.25), and refinements of two crystal structures indicate two important potential building blocks for the intermediate compositions, one of these being the cubic γ-brass structure. A Farey tree construction is described that accounts for the observed long-period superlattice and provides a possible algorithm for targeting one-dimensional, quasiperiodic phases in this and related systems. Tight-binding electronic-structure calculations on the two limiting structures for this region of the Zn−Pd phase diagram suggest a relationship between structure and bonding in these complex intermetallic systems.

Comments

Reprinted (adapted) with permission from Chem. Mater., 2006, 18 (7), pp 1848–1856. Copyright 2006 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2006
Collections