Campus Units

Chemistry, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

2004

Journal or Book Title

Chemistry of Materials

Volume

16

Issue

8

First Page

1580

Last Page

1589

DOI

10.1021/cm035274a

Abstract

Composition, crystal structure, and stability of the thermoelectric material, known in the literature as “Zn4Sb3”, has been characterized using low- and room-temperature single-crystal X-ray diffraction techniques, as well as in situ room- and high-temperature powder X-ray diffraction methods. We have found that the Zn4Sb3 phase does not exist below 767 K (the β−γ transition temperature); it is the Zn6-δSb5 phase that is erroneously assigned the Zn4Sb3 composition and is considered to be a promising thermoelectric material. The structure of Zn6-δSb5 is similar to that of “Zn4Sb3” but no Zn/Sb mixture is observed on any Sb site. Instead, a significant deficiency on the Zn site is discovered. There are two, not one, as previously reported, Zn6-δSb5 polymorphs below room temperature. In dynamic vacuum and at elevated temperatures the Zn6-δSb5 phase becomes zinc poorer due to zinc sublimation and eventually decomposes into ZnSb and Zn before reaching its melting temperature of 841 K. The binary Zn1-δSb compound also loses zinc in dynamic vacuum and at high temperatures and decomposes into Sb and Zn. The structure of Zn1-δSb (CdSb-type) is analyzed using powder X-ray diffraction techniques.

Comments

Reprinted (adapted) with permission from Chem. Mater., 2004, 16 (8), pp 1580–1589. Copyright 2004 American Chemical Society.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf

Share

COinS