Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

12-17-1998

Journal or Book Title

The Journal of Chemical Physics

Volume

110

Issue

12

First Page

5884

Last Page

5892

DOI

10.1063/1.478488

Abstract

Three-pulse photon echo peak shift measurements were employed to study aqueous solvation dynamics. A new perspective of dielectric continuum theory [X. Song and D. Chandler, J. Chem. Phys. 108, 2594 (1998)] aided in characterizing the system-bath interactions of eosin in water. Application of this theory provides solvation energies, which were used within the spectral density representation ρ(ω), to calculate the experimental peak shift. Simulations with only solvation contributions to ρ(ω), where a substantial amplitude of the solvation occurs within ∼30 fs, are remarkably consistent with our data. Furthermore, simulations using this theoretical solvation spectral density and an experimentally determined intramolecular spectral density yield an excellent total simulation of the peak shift data over the entire dynamic range. Our experimental results substantiate predictions that interaction-induced polarizability effects, contributing via a ∼180 cm−1 band in the spectral density, influence the initial dynamics.

Comments

This article is from The Journal of Chemical Physics, 1999 110(12); 5884-5892. Doi: 10.1063/1.478488. Posted with permission.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS