Document Type

Conference Proceeding


Review of Progress in Quantitative Nondestructive Evaluation

Publication Date



San Diego, CA


We report an investigation of terahertz waves for the nondestructive evaluation of composite materials and structures. The modalities of the terahertz radiation used were time domain spectroscopy (TDS) and continuous wave (CW). The composite materials and structures investigated include both non‐conducting polymeric composites and carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse can detect a crack hidden behind a larger crack. This was demonstrated in thick GFRP laminates containing double saw slots. In carbon composites the penetration of terahertz waves is quite limited and the detection of flaws is strongly affected by the angle between the electric field vector of the terahertz waves and the intervening fiber directions. The structures tested in this study include both solid laminates and honeycomb sandwiches. The defects and anomalies investigated by terahertz waves were foreign material inclusions, simulated disbond and delamination, mechanical impact damage, heat damage, and water or hydraulic fluid ingression. The effectiveness and limitations of terahertz radiation for the NDE of composites are discussed.


Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

This article appeared in AIP Conference Proceedings 1335 (2011): 533–540 and may be found at

Copyright Owner

American Institute of Physics




Article Location