Baseline UT measurements for armor inspection

Thumbnail Image
Date
2009-07-01
Authors
Richter, Nathaniel
Barnard, Daniel
Gray, Timothy
Brasche, Lisa
Thompson, R.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Margetan, Frank
Associate Scientist
Research Projects
Organizational Units
Organizational Unit
Center for Nondestructive Evaluation

The Center for Nondestructive Evaluation at Iowa State has been involved in the use of nondestructive evaluation testing (NDT) technologies to: assess the integrity of a substance, material or structure; assess the criticality of any flaws, and to predict the object’s remaining serviceability. NDT technologies used include ultrasonics and acoustic emissions, electromagnetic technologies, computer tomography, thermal imaging, and others.

History
In October of 1985 the CNDE was approved by the State Board of Regents after it had received a grant from the National Science Foundation (NSF) as an Industry/University Cooperative Research Center.

Journal Issue
Is Version Of
Versions
Series
Department
Center for Nondestructive Evaluation
Abstract

Some prototype armor panels are fabricated from several layers of dissimilar material bonded together. These may include ceramics, graphite composites, fiberglass composites and rubber. The ultrasonic properties of these layers influence inspections for armor defects. In this paper we describe measurements of ultrasonic velocity, attenuation, sound beam distortion and signal fluctuations for the individual layers comprising one armor prototype. We then discuss how knowledge of these properties can be used when choosing an optimum frequency for an ultrasonic pitch∕catch immersion inspection. In our case an effective inspection frequency near 1.5 MHz affords: (1) adequate strength of through‐transmitted signals in unflawed armor; (2) adequate lateral resolution for detecting small disbonds at interfaces; and (3) low levels of UT signal fluctuations due to the natural inhomogeneity of certain armor layers. The utility of this approach is demonstrated using armor panels containing artificial disbonds at selected interfaces.

Comments

Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

This article appeared in AIP Conference Proceedings 1211 (2010): 1217–1224 and may be found at http://dx.doi.org/10.1063/1.3362196.

Description
Keywords
Citation
DOI
Source
Copyright
Fri Jan 01 00:00:00 UTC 2010