Document Type

Article

Publication Date

2013

Journal or Book Title

Advances in Materials Science and Engineering

Volume

2013

First Page

563962

DOI

10.1155/2013/563962

Abstract

Terahertz (THz) applications have emerged as one of the most new powerful nondestructive evaluation (NDE) techniques. A new T-ray time-domain spectroscopy system was utilized for detecting and evaluating orientation influence in carbon fiber-reinforced plastics (CFRPs) composite laminates. Investigation of terahertz time-domain spectroscopy (THz-TDS) was made, and reflection and transmission configurations were studied as a nondestructive evaluation technique. Here, the CFRP composites derived their excellent mechanical strength, stiffness, and electrical conductivity from carbon fibers. Especially, the electrical conductivity of the CFRP composites depends on the direction of unidirectional fibers since carbon fibers are electrically conducting while the epoxy matrix is not. In order to solve various material properties, the index of refraction (n) and the absorption coefficient (α) are derived in reflective and transmission configurations using the terahertz time-domain spectroscopy. Also, for a 48-ply thermoplastic polyphenylene-sulfide-(PPS-) based CFRP solid laminate and nonconducting materials, the terahertz scanning images were made at the angles ranged from 0 to 180 with respect to the nominal fiber axis. So, the images were mapped out based on the electrical field (E-field) direction in the CFRP solid laminates. It is found that the conductivity (σ) depends on the angles of the nominal axis in the unidirectional fiber.

Comments

This article is from Advances in Materials Science and Engineering 2013 (2013), Article ID 563962, doi:10.1155/2013/563962.

Rights

Copyright © 2013 Kwang-Hee Im et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright Owner

Kwang-Hee Im et al

Language

en

File Format

application/pdf

Share

COinS