Effects of surface condition on Barkhausen emissions from steel

Thumbnail Image
Date
1996-04-15
Authors
Parakka, Anthony
Jiles, David
Gupta, H.
Jalics, S.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Jiles, David
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Center for Nondestructive Evaluation

The Center for Nondestructive Evaluation at Iowa State has been involved in the use of nondestructive evaluation testing (NDT) technologies to: assess the integrity of a substance, material or structure; assess the criticality of any flaws, and to predict the object’s remaining serviceability. NDT technologies used include ultrasonics and acoustic emissions, electromagnetic technologies, computer tomography, thermal imaging, and others.

History
In October of 1985 the CNDE was approved by the State Board of Regents after it had received a grant from the National Science Foundation (NSF) as an Industry/University Cooperative Research Center.

Journal Issue
Is Version Of
Versions
Series
Department
Center for Nondestructive Evaluation
Abstract

Temperature changes during mechanical processing such as grinding of steel parts can cause phase changes in the microstructure. Thermal shock during the process can give rise to localized surface residual stress. The net result can be reduced wear resistance and fatigue life leading to early failure during service. Effective methods for the detection of such damage are necessary. Barkhausen emissions, which arise from discontinuous motion of domain walls, are sensitive to microstructual changes that affect domain dynamics. Detected Barkhausen signals are predominantly from a surface layer about 200 μm thick, those from deeper being attenuated due to eddy currents. An analysis of the detected signals can provide an indication of the surface condition of the material.Barkhausen signals from parts ground under controlled conditions were found to be dependent on the grinding process conditions. The signal changes were consistent with residual stress measured by x‐ray diffraction and with hardness measurements that are indicative of changes in microstructure.

Comments

The following article appeared in Journal of Applied Physics 79 (1996): 6045 and may be found at http://dx.doi.org/10.1063/1.362085.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 1996
Collections