Finite element analysis of the influence of a fatigue crack on magnetic properties of steel

Thumbnail Image
Date
1998-06-01
Authors
Shi, Y.
Jiles, David
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Jiles, David
Distinguished Professor Emeritus
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Center for Nondestructive Evaluation
Abstract

Fatigue can affect the magnetic properties of materials due to microstructural changes. Previous investigations have shown that several structure sensitive magnetic properties, such as coercivityHc and remanenceBr, changed systematically as a result of fatigue. When approaching failure the accumulated changes in microstructure resulted in the occurrence of fatigue cracks and the magnetic properties showed dramatic changes which mainly resulted from the geometrical changes in samples due to the cracks. It was found that the remanenceBr followed the changes in stress, while the coercivityHc sometimes showed different trends. In this article the influence of the size and the position of a fatigue crack on magnetic field and magnetic induction were studied using finite element modeling. Models were constructed to simulate the geometry of the test sample and sensor. It was found that, for a given coil current in the exciting coil, the magnetic induction was mainly determined by the geometry of the crack, while the magnetic field was influenced by both the size and the position of the crack.

Comments

The following article appeared in Journal of Applied Physics 83 (1998): 6353 and may be found at http://dx.doi.org/10.1063/1.367844.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 1998
Collections