Degree Type

Creative Component

Semester of Graduation

Spring 2018

Department

Electrical and Computer Engineering

First Major Professor

Doug Jacobson

Degree(s)

Master of Science (MS)

Major(s)

Computer Engineering

Abstract

This paper discusses malware detection in personal computers. Current malware detection solutions are static. Antiviruses rely on lists of malicious signatures that are then used in file scanning. These antiviruses are also very dependent on the operating system, requiring different solutions for different systems. This paper presents a solution that detects malware based on runtime attributes. It also emphasizes that these attributes are easily accessible and fairly generic meaning that it functions across systems and without specialized information. The attributes are used in a machine learning system that makes it flexible for retraining if necessary, but capable of handling new variants without needing to modify the solution. It can also be run quickly which allows for detection to be achieved before the malware gets too far.

Copyright Owner

The Authors

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

File Format

application/pdf

Share

COinS