A data driven method for congestion mining using big data analytic

Thumbnail Image
Date
2019-01-01
Authors
Zarindast, Atousa
Major Professor
Anuj Sharma
Gary Mirka
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

Congestion detection is one of the key steps to reduce delays and associated costs in traffic management. With the increasing usage of GPS base navigation, promising speed data is now available. This study utilizes such extensive historical probe data to detect spatiotemporal congestion by mining historical speed data. The detected congestion were further classified as Recurrent and Non Recurrent Congestion (RC, NRC). This paper presents a big data driven expert system for identifying both recurrent and non-recurrent congestion and analyzing the delay and cost associated with them. For this purpose, first normal and anomalous days were classified based on travel rate distribution. Later, we utilized Bayesian change point detection to segment speed signal and detect temporal congestion. Finally according to the type of congestion summary statistics and performance measures including (delays, delay cost, and congestion hours) were analyzed. In this study, a statistical big data mining methodology is developed and the robustness of the proposed methodology is tested on probe data for 2016 calendar year, in Des Moines region, Iowa, US. The proposed framework is self adaptive because it does not rely on additional information for detecting spatio-temporal congestion. Therefore, it addresses the limits of prior work in NRC detection. The optimum value for congestion percentage threshold is identified by Elbow cut off method and speed values were temporally denoised

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Tue Jan 01 00:00:00 UTC 2019