Publication Date


Technical Report Number



Mathematics of Computing


Genetic algorithms and related evolutionary techniques offer a promising approach for automatically exploring the design space of neural architectures for artificial intelligence and cognitive modeling. Central to this process of evolutionary design of neural architectures (EDNA) is the choice of the representation scheme that is used to encode a neural architecture in the form of a gene string (genotype) and to decode a genotype into the corresponding neural architecture (phenotype). The representation scheme used not only constrains the class of neural architectures that are representable (evolvable) in the system, but also determines the efficiency and the time-space complexity of the evolutionary design procedure as a whole. This paper identifies and discusses a set of properties that can be used to characterize different representations used in EDNA and to design or select representations with the necessary properties for particular classes of applications.