Design and implementation of a reusable type inference engine and its application to Scheme

Thumbnail Image
Date
2005-07-01
Authors
Dorn, Brian
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Computer Science
Abstract

Static type checking allows programmers to locate potential bugs prior to code execution. However, developing a static type checker is a complicated endeavor. Implementers must address a number of concerns including recursion over syntax elements, unification of type variables within environments, and generation of meaningful error messages for users. The inherent complexity of type checkers can lead to code that is difficult to both understand and maintain. This thesis presents the design and implementation of an abstract type inference engine and its use in the revision of a student-oriented type checker for the Scheme programming language. Our inference engine provides a complete set of unification facilities to programmers for the specication of a type checking system. It allows for a clean separation of unification algorithms, inference rules, and error generation. We also demonstrate the applicability of the engine by using it to construct a type checker for Scheme targeted at novice programmers. This checker borrows a student-friendly type notation from a previous version and extends its system, providing for language native module support, a more complete treatment of advanced data types, and better error messages.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Collections