Publication Date

1995

Technical Report Number

TR95-11

Subjects

Computer Systems Organization, Computing Methodologies, Hardware, Mathematics of Computing

Abstract

Artificial neural networks (ANN), due to their inherent parallelism and potential fault tolerance offer an attractive paradigm for robust and efficient implementations of large modern database and knowledge base systems. This paper explores a neural network model for efficient implementation of a database query system. The application of the proposed model to a high-speed library query system for retrieval of multiple items is based on partial match of the specified query criteria with the stored records. The performance of the ANN realization of the database query module is analyzed and compared with other techniques commonly in current computer systems. The results of this analysis suggest that the proposed ANN design offers an attractive approach for the realization of query modules in large database and knowledge base systems, especially for retrieval based on partial matches.

Share

COinS