A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA)

Thumbnail Image
Date
2012-01-01
Authors
Lastine, David
Sankaran, Suresh
Somani, Arun
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Somani, Arun
Senior Associate Dean
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

In this paper we propose a new efficient fault tolerant multipoint routing algorithm for optical networks. The routing for a multipoint request is accomplished by finding a bidirectional cycle simple or nonsimple including all nodes that are participating in the multipoint session. Each link can be used only once. Use of a cycle ensures that a single link (or node in case of simple cycle) failure does not interrupt the session except the failed node if it was part of the multipoint session. Determining the smallest cycle with a given set of Multi-point (MP) nodes is a NP-Complete problem. Therefore, we explore heuristic algorithms to determine an appropriate cycle to route multipoint connections. We allow non-simple cycles to route requests as they use fewer resources than simple cycles in some cases. We also provide an ILP formulation for routing multipoint request and compare its results with the output of our best heuristic algorithm. On Arpanet for over 80% of the time, our best heuristic is able to find a cycle that is within 1.2 times that of the optimal.

Comments

This is a post-peer-review, pre-copyedit version of a proceeding published as Lastine D., Sankaran S., Somani A.K. (2012) A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA). In: Tomkos I., Bouras C.J., Ellinas G., Demestichas P., Sinha P. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 66. Springer, Berlin, Heidelberg. The final authenticated version is available online at DOI: 10.1007/978-3-642-30376-0_23. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2012