Capacity of sum-networks for different message alphabets

Thumbnail Image
Date
2015-01-01
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Tripathy, Ardhendu
Assistant Professor
Person
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

A sum-network is a directed acyclic network in which all terminal nodes demand the `sum' of the independent information observed at the source nodes. Many characteristics of the well-studied multiple-unicast network communication problem also hold for sum-networks due to a known reduction between instances of these two problems. Our main result is that unlike a multiple unicast network, the coding capacity of a sum-network is dependent on the message alphabet. We demonstrate this using a construction procedure and show that the choice of a message alphabet can reduce the coding capacity of a sum-network from 1 to close to 0.

Comments

This is a manuscript of a proceeding from the IEEE International Symposium on Information Theory (2015): 606, doi:10.1109/ISIT.2015.7282526. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2015