Campus Units

Electrical and Computer Engineering

Document Type

Conference Proceeding

Conference

2011 IEEE Information Theory Workshop (ITW)

Publication Version

Accepted Manuscript

Link to Published Version

https://doi.org/10.1109/ITW.2011.6089359

Publication Date

2011

Journal or Book Title

2011 IEEE Information Theory Workshop (ITW)

DOI

10.1109/ITW.2011.6089359

Conference Title

2011 IEEE Information Theory Workshop

Conference Date

October 16-20, 2011

City

Paraty, Brazil

Abstract

We consider the multiple unicast problem under network coding over directed acyclic networks when there are two source-terminal pairs, s1 - t1 and s2 - t2. Current characterizations of the multiple unicast capacity region in this setting have a large number of inequalities, which makes them hard to explicitly evaluate. In this work we consider a slightly different problem. We assume that we only know certain minimum cut values for the network, e.g., mincut(Si, Tj), where Si ⊆ {si, s2} and Tj ⊆ {t1, t2} for different subsets Si and Tj. Based on these values, we propose an achievable rate region for this problem based on linear codes. Towards this end, we begin by defining a base region where both sources are multicast to both the terminals. Following this we enlarge the region by appropriately encoding the information at the source nodes, such that terminal ti is only guaranteed to decode information from the intended source si, while decoding a linear function of the other source. The rate region takes different forms depending upon the relationship of the different cut values in the network.

Comments

This is a manuscript of a proceeding from the IEEE Information Theory Workshop (2011): 120, doi:10.1109/ITW.2011.6089359. Posted with permission.

Rights

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Copyright Owner

IEEE

Language

en

File Format

application/pdf

Published Version

Share

Article Location

 
COinS