Campus Units

Electrical and Computer Engineering

Document Type

Conference Proceeding


2016 IEEE Globecom Workshops

Publication Version

Accepted Manuscript

Link to Published Version

Publication Date


Journal or Book Title

2016 IEEE Globecom Workshops



Conference Title

2016 IEEE Globecom Workshops

Conference Date

December 4-8, 2016


Washington, DC


Caching is popular technique in content delivery networks that allows for reductions in transmission rates from the content-hosting server to the end users. Coded caching is a generalization of conventional caching that considers the possibility of coding in the caches and transmitting coded signals from the server. Prior results in this area demonstrate that huge reductions in transmission rates are possible and this makes coded caching an attractive option for the next generation of content-delivery networks. However, these results require that each file hosted in the server be partitioned into a large number (i.e., the subpacketization level) of non- overlapping subfiles. From a practical perspective, this is problematic as it means that prior schemes are only applicable when the size of the files is extremely large. In this work, we propose a novel coded caching scheme that enjoys a significantly lower subpacketization level than prior schemes, while only suffering a marginal increase in the transmission rate. In particular, for a fixed cache size, the scaling with the number of users is such that the increase in transmission rate is negligible, but the decrease in subpacketization level is exponential.


This is a manuscript of a proceeding from the IEEE Globecom Workshops (2016), doi:10.1109/GLOCOMW.2016.7848861. Posted with permission.


Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Copyright Owner




File Format


Published Version


Article Location