Campus Units

Electrical and Computer Engineering

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

5-2006

Journal or Book Title

IEEE Transactions on Biomedical Engineering

Volume

53

Issue

5

First Page

840

Last Page

844

DOI

10.1109/TBME.2005.863942

Abstract

We study the performance of various beamformers for estimating a current dipole source at a known location using electroencephalography (EEG) and magnetoencephalography(MEG). We present our beamformers in the form of the generalized sidelobe canceler (GSC). Under this structure, the beamformer can be solved by finding a filter that achieves the minimum mean-squared error (MMSE) between the mainbeam response and filtered observed signal. We express the MMSE as a function of the filter's rank and use it as a criterion to evaluate the performance of the beamformers. We do not make any assumptions on the rank of the interference-plus-noise covariance matrix. Instead, we treat it as low-rank and derive a general expression for the MMSE. We present numerical examples to compare the MSE performance of beamformers commonly studied in the literature: principal components (PCs),cross-spectral metrics (CSMs), and eigencanceler (EIG) beamformers. Our results show that good estimates of the dipole source signals can be achieved using reduced-rank beamformers even for low signal-to-noise ratio (SNR) values

Comments

This is a manuscript of an article from IEEE Transactions on Biomedical Engineering 53 (2006): 840, doi:10.1109/TBME.2005.863942. Posted with permission.

Rights

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Copyright Owner

IEEE

Language

en

File Format

application/pdf

Published Version

Included in

Biomedical Commons

Share

COinS