Campus Units
Electrical and Computer Engineering, Mathematics
Document Type
Article
Publication Version
Submitted Manuscript
Publication Date
2019
Journal or Book Title
arXiv
Abstract
Several recent works have used coding-theoretic ideas for mitigating the effect of stragglers in distributed matrix computations (matrix-vector and matrix-matrix multiplication) over the reals. In particular, a polynomial code based approach distributes matrix-matrix multiplication among n worker nodes by means of polynomial evaluations. This allows for an ``optimal'' recovery threshold whereby the intended result can be decoded as long as at least (n−s) worker nodes complete their tasks; s is the number of stragglers that the scheme can handle. However, a major issue with these approaches is the high condition number of the corresponding Vandermonde-structured recovery matrices. This presents serious numerical precision issues when decoding the desired result.
It is well known that the condition number of real Vandermonde matrices grows exponentially in n. In contrast, the condition numbers of Vandermonde matrices with parameters on the unit circle are much better behaved. In this work we leverage the properties of circulant permutation matrices and rotation matrices to obtain coded computation schemes with significantly lower worst case condition numbers; these matrices have eigenvalues that lie on the unit circle. Our scheme is such that the associated recovery matrices have a condition number corresponding to Vandermonde matrices with parameters given by the eigenvalues of the corresponding circulant permutation and rotation matrices. We demonstrate an upper bound on the worst case condition number of these matrices which grows as ≈O(ns+6). In essence, we leverage the well-behaved conditioning of complex Vandermonde matrices with parameters on the unit circle, while still working with computation over the reals. Experimental results demonstrate that our proposed method has condition numbers that are several orders of magnitude better than prior work.
Copyright Owner
The Authors
Copyright Date
2019
Language
en
File Format
application/pdf
Recommended Citation
Ramamoorthy, Aditya and Tang, Li, "Numerically stable coded matrix computations via circulant and rotation matrix embeddings" (2019). Electrical and Computer Engineering Publications. 231.
https://lib.dr.iastate.edu/ece_pubs/231
Comments
This is a pre-print of the article Ramamoorthy, Aditya, and Li Tang. "Numerically stable coded matrix computations via circulant and rotation matrix embeddings." arXiv preprint arXiv:1910.06515 (2019). Posted with permission.