Scalable FastMDP for Pre-departure Airspace Reservation and Strategic De-conflict

Thumbnail Image
Date
2020-01-01
Authors
Bertram, Joshua
Wei, Peng
Zambreno, Joseph
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Zambreno, Joseph
Professor
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

Pre-departure flight plan scheduling for Urban Air Mobility (UAM) and cargo delivery drones will require on-demand scheduling of large numbers of aircraft. We examine the scalability of an algorithm known as FastMDP which was shown to perform well in deconflicting many dozens of aircraft in a dense airspace environment with terrain. We show that the algorithm can adapted to perform first-come-first-served pre-departure flight plan scheduling where conflict free flight plans are generated on demand. We demonstrate a parallelized implementation of the algorithm on a Graphics Processor Unit (GPU) which we term FastMDP-GPU and show the level of performance and scaling that can be achieved. Our results show that on commodity GPU hardware we can perform flight plan scheduling against 2000-3000 known flight plans and with server-class hardware the performance can be higher. We believe the results show promise for implementing a large scale UAM scheduler capable of performing on-demand flight scheduling that would be suitable for both a centralized or distributed flight planning system.

Comments

This is a pre-print of the article Bertram, Joshua R., Peng Wei, and Joseph Zambreno. "Scalable FastMDP for Pre-departure Airspace Reservation and Strategic De-conflict." arXiv preprint arXiv:2008.03518 (2020). Posted with permission.

Description
Keywords
Citation
DOI
Source
Copyright
Wed Jan 01 00:00:00 UTC 2020
Collections