Document Type

Conference Proceeding

Publication Date

2006

Journal or Book Title

AIP Conference Proceedings

Volume

820

First Page

617

Last Page

624

DOI

10.1063/1.2184584

Abstract

We develop a Bayesian framework for estimating defect signals from noisy measurements. We propose a parametric model for the shape of the defect region and assume that the defect signal within this region is random with unknown mean and variance. Markov chain Monte Carlo (MCMC) algorithms are derived for simulating from the posterior distributions of the model parameters and defect signals. These algorithms are utilized to identify potential defect regions and estimate their size and reflectivity. We specialize the proposed framework to elliptical defect shape and Gaussian signal and noise models and apply it to experimental ultrasonic C‐scan data from an inspection of a cylindrical titanium billet.

Comments

The following article appeared in AIP Conference Proceedings 820 (2006): 820 and may be found at doi:10.1063/1.2184584.

Rights

Copyright 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS