Sparse X-Ray CT Image Reconstruction Using ECME Hard Thresholding Methods

Thumbnail Image
Date
2011-01-01
Authors
Qiu, Kun
Dogandžić, Aleksandar
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Dogandžić, Aleksandar
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

We apply expectation‐conditional maximization either (ECME) hard thresholding algorithms to X‐ray computed tomography (CT) reconstruction, where we implement the sampling operator using the nonuniform fast Fourier transform (NUFFT). The measurements follow an underdetermined linear model, where the regression‐coefficient vector is a sum of an unknown deterministic sparse signal component and a zero‐mean white Gaussian component with an unknown variance. Our ECME schemes aim at maximizing this model’s likelihood function with respect to the sparse signal and variance of the random signal component. These schemes exploit signal sparsity in the discrete wavelet transform (DWT) domain and yield better reconstructions than the traditional filtered backprojection (FBP) approach, which is demonstrated via numerical examples. In contrast with FBP, our methods achieve artifact‐free reconstructions in undersampled and limited‐angle projection examples. We also compare the ECME schemes with a state‐of‐the‐art convex sparse signal reconstruction approach in terms of the reconstruction speed.

Comments

The following article appeared in AIP Conference Proceedings 1335 (2011): 469 and may be found at doi:10.1063/1.3591889.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections