Document Type

Article

Publication Version

Published Version

Publication Date

2015

Journal or Book Title

Journal of Applied Physics

Volume

117

Issue

17

First Page

17A506

DOI

10.1063/1.4919229

Abstract

The temperature dependence of the magnetic properties of titanium modified cobalt ferrite is presented. The change of maximum magnetization obtained at H ≈ 2.4 MA/m between any two temperatures increases systematically with composition, which is desirable for applications in devices. Variation in magnetocrystalline anisotropy and coercivity were different from previous studies on cation substituted cobalt ferrite. At lower concentrations, the effect of lower thermal energy dominated the effect of non-magnetic cation substitutions in controlling the anisotropy.The reverse was the case at higher concentrations. The temperature dependence of coercivity is dominated by the contribution of magnetocrystalline anisotropy to coercivity, while the compositional dependence of coercivity is dominated by microstructural contribution through the pinning of domain walls.

Comments

The following article appeared in Journal of Applied Physics 117 (2015): 17A506 and may be found at http://dx.doi.org/10.1063/1.4919229.

Rights

Copyright 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS