Document Type

Article

Publication Version

Published Version

Publication Date

2012

Journal or Book Title

Journal of Applied Physics

Volume

111

Issue

7

First Page

07A941-1

Last Page

07A941-3

DOI

10.1063/1.3679391

Abstract

A new fiber-based, magneto-optic switch is proposed with a novel approach for low power and efficient operation. The switch, with reasonable switching speed compared to competitive designs, operates at considerably reduced power levels, which makes it a practical deployable solution. The basic switch setup consists of a Faraday rotator in a Sagnac fiber-optic interferometer in which optical switching is controlled by an electronic driving circuit. The electronic system generates a magnetic field through the Faraday rotator by driving current through a specially designed two-coil system. The new coil system allows for sufficient field generation at low quiescent power levels while maintaining very short optical rise and fall times. The design and considerations as well as the effect of mutual inductance between the two coils and its influence on switching times are investigated. The optical system consists of a Sagnac interferometer with a Faraday rotator within the Sagnac loop. Appropriate phase shift for interference is achieved by the proposed field generating system designed for the magneto-optical element. The theory of operation, design, experimental results, and optical and electronic setup are presented and analyzed.

Comments

The following article appeared in Journal of Applied Physics 111 (2012): and may be found at doi:10.1063/1.3679391.

Rights

Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS