Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

7-2013

Journal or Book Title

IEEE Transactions on Magnetics

Volume

49

Issue

7

First Page

3426

Last Page

3429

DOI

10.1109/TMAG.2013.2247578

Abstract

Transcranial magnetic stimulation (TMS) uses transient magnetic field to activate brain regions by inducing an electric field across and an electric current through neurons. Functional magnetic resonance imaging (fMRI) allows the measurement of brain activity making it a potentially useful tool in combination with TMS to analyze the sites of stimulation within the brain. TMS typically utilizes a high current pulse up to 8 kA at approximately 2.5 kHz to induce an electric field inside the brain sufficient for neural stimulation. Lorentz forces are created on the TMS coil and are increased in the presence of a high external magnetic field from the MRI magnet. This study implements a realistic coil model developed from X-ray images of a commercial figure-of-eight TMS coil. The Lorentz forces and stress profile inside the current carrying material of this realistically modeled coil are presented. Results show that the maximum Lorentz force density is significantly larger than previously calculated, by a factor of more than 3.

Comments

Copyright 2013 IEEE. This is a manuscript of an article from IEEE Transactions on Magnetics 49 (2013): 3426, doi: 10.1109/TMAG.2013.2247578. Posted with permission.

Copyright Owner

IEEE

Language

en

File Format

application/pdf

Published Version

Share

COinS