Magnetotransport study of (Sb1−xBix)2Te3 thin films on mica substrate for ideal topological insulator

Thumbnail Image
Date
2016-01-01
Authors
Ni, Yan
Zhang, Zhen
Nlebedim, Cajetan
Jiles, David
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Jiles, David
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryElectrical and Computer Engineering
Abstract

We deposited high quality (Sb1−xBix)2Te3 on mica substrate by molecular beam epitaxy and investigated their magnetotransport properties. It is found that the average surface roughness of thin films is lower than 2 nm. Moreover, a local maxima on the sheet resistance is obtained with x = 0.043, indicating a minimization of bulk conductivity at this composition. For (Sb0.957Bi0.043)2Te3, weak antilocalization with coefficient of -0.43 is observed, confirming the existence of 2D surface states. Moreover Shubnikov-de Hass oscillation behavior occurs under high magnetic field. The 2D carrier density is then determined as 0.81 × 1016 m−2, which is lower than that of most TIs reported previously, indicating that (Sb0.957Bi0.043)2Te3 is close to ideal TI composition of which the Dirac point and Fermi surface cross within the bulk bandgap. Our results thus demonstrate the best estimated composition for ideal TI is close to (Sb0.957Bi0.043)2Te3 and will be helpful for designing TI-based devices.

Comments

The following article appeared in AIP Advances 6, 055812 (2016) and may be found at http://dx.doi.org/10.1063/1.4943156.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections