Campus Units

Animal Science, Economics, Veterinary Diagnostic and Production Animal Medicine

Document Type

Article

Publication Version

Published Version

Publication Date

1-2019

Journal or Book Title

Translational Animal Science

Volume

3

Issue

1

First Page or Article ID Number

273

Last Page

287

DOI

10.1093/tas/txy115

Abstract

The objective of this study was to estimate the impact of a single injection of extended-release eprinomectin on economically relevant production variables in beef cows and calves as well as subsequent feedlot health, performance, and carcass traits of calves compared with a traditional, short duration anthelmintic. Animals from 13 cooperator herds across seven states were stratified within herd and assigned to one of two treatments; injectable doramectin (DOR; Dectomax; n = 828) or injectable eprinomection (EPR; Longrange; n = 832). Fecal samples were randomly collected from a subset of cows at both treatment and the end of grazing to evaluate fecal egg count (FEC). Continuous and categorical data were analyzed using the MIXED and GLIMMIX procedures of SAS, respectively. Cow treatment body weight (BW) and final BW were not different (P ≥ 0.40) between treatments. There were no differences (P ≥ 0.12) between treatments in cow ADG, change in BW, or body condition scores during the grazing season. While FEC at treatment did not differ (P = 0.18), cows treated with EPR had lower final FEC at the end of the grazing season (P = 0.02) and a greater reduction of FEC over the grazing season (P = 0.01). Calf treatment BW, weaning BW, and ADG did not differ between treatments (P ≥ 0.34). Incidence of pinkeye tended to be less (P = 0.06) for cows treated with EPR but was not different for calves (P = 0.43). Conception to AI, overall pregnancy rates, and calving interval were not different between treatments (P ≥ 0.45). A subset of calves from each herd was sent to Tri-County Steer Carcass Futurity (TCSCF) feedlot for the finishing phase. Calf BW did not differ at initiation of feeding (P = 0.20). While EPR calves tended to be heavier at reimplantation (P = 0.07), final BW and overall ADG were not different between treatments (P ≥ 0.13). Health records indicated lower morbidity for EPR calves (P = 0.05). Carcass performance including HCW, dressing percent, backfat, KPH, REA, YG, were not different between treatment groups (P ≥ 0.12). However, EPR calves had a greater marbling score, greater average quality grade (P < 0.01), and higher proportion of calves that graded average choice or greater (P = 0.03). Results of this study indicate no difference in cow or preweaning calf performance, however, carcass quality in the feedlot phase was improved. Thus, economic analysis indicates opportunities for return on investment if animals treated with EPR have improved health status and/or carcass quality during the feeding phase.

Comments

This article is published as Andresen, Claire E., Dan D. Loy, Troy A. Brick, Lee L. Schulz, and Patrick J. Gunn. "Effects of extended-release eprinomectin on productivity measures in cow–calf systems and subsequent feedlot performance and carcass characteristics of calves." Translational Animal Science 3, no. 1 (2019): 273-287. doi: 10.1093/tas/txy115.

Rights

This work is written by (a) US Government employee(s) and is in the public domain in the US. This Open Access article contains public sector information licensed under the Open Government Licence v2.0 (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/).

Language

en

File Format

application/pdf

Share

COinS