Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect

Thumbnail Image
Date
2016-04-01
Authors
Berens, Ali
Glastad, Karl
Severin, Andrew
Brendel, Volker
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Severin, Andrew
Manager Research
Person
Toth, Amy
Professor
Research Projects
Organizational Units
Organizational Unit
Ecology, Evolution and Organismal Biology

The Department of Ecology, Evolution, and Organismal Biology seeks to teach the studies of ecology (organisms and their environment), evolutionary theory (the origin and interrelationships of organisms), and organismal biology (the structure, function, and biodiversity of organisms). In doing this, it offers several majors which are codirected with other departments, including biology, genetics, and environmental sciences.

History
The Department of Ecology, Evolution, and Organismal Biology was founded in 2003 as a merger of the Department of Botany, the Department of Microbiology, and the Department of Zoology and Genetics.

Dates of Existence
2003–present

Related Units

Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Organizational Unit
Genome Informatics Facility
The Genome Informatics Facility serves as a centralized resource of expertise on the application of emerging sequencing technologies and open source software as applied to biological systems. Its mission is to integrate this knowledge into pipelines that are easy to understand and use by faculty, staff and students to enable the transformation of ‘big data’ into data that dramatically accelerates our understanding of biology and evolutionary processes.
Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal BiologyEntomologyGenome Informatics Facility
Abstract

Comparative genomics of social insects has been intensely pursued in recent years with the goal of providing insights into the evolution of social behaviour and its underlying genomic and epigenomic basis. However, the comparative approach has been hampered by a paucity of data on some of the most informative social forms (e.g. incipiently and primitively social) and taxa (especially members of the wasp family Vespidae) for studying social evolution. Here, we provide a draft genome of the primitively eusocial model insect Polistes dominula, accompanied by analysis of caste-related transcriptome and methylome sequence data for adult queens and workers. Polistes dominula possesses a fairly typical hymenopteran genome, but shows very low genomewide GC content and some evidence of reduced genome size. We found numerous caste-related differences in gene expression, with evidence that both conserved and novel genes are related to caste differences. Most strikingly, these –omics data reveal a major reduction in one of the major epigenetic mechanisms that has been previously suggested to be important for caste differences in social insects: DNA methylation. Along with a conspicuous loss of a key gene associated with environmentally responsive DNA methylation (the de novo DNA methyltransferase Dnmt3), these wasps have greatly reduced genomewide methylation to almost zero. In addition to providing a valuable resource for comparative analysis of social insect evolution, our integrative –omics data for this important behavioural and evolutionary model system call into question the general importance of DNA methylation in caste differences and evolution in social insects.

Comments

This article is from Molecular Ecology 25 (2016): 1769–1784, doi:10.1111/mec.13578. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections