Behavioural plasticity may compensate for climate change in a long-lived reptile with temperature-dependent sex determination

Thumbnail Image
Date
2012-08-01
Authors
Refsnider, Jeanine
Janzen, Fredric
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Janzen, Fredric
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Ecology, Evolution and Organismal Biology

The Department of Ecology, Evolution, and Organismal Biology seeks to teach the studies of ecology (organisms and their environment), evolutionary theory (the origin and interrelationships of organisms), and organismal biology (the structure, function, and biodiversity of organisms). In doing this, it offers several majors which are codirected with other departments, including biology, genetics, and environmental sciences.

History
The Department of Ecology, Evolution, and Organismal Biology was founded in 2003 as a merger of the Department of Botany, the Department of Microbiology, and the Department of Zoology and Genetics.

Dates of Existence
2003–present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

How are organisms responding to climate change? The rapidity with which climate is changing suggests that, in species with long generation times, adaptive evolution may be too slow to keep pace with climate change, and that alternative mechanisms, such as behavioural plasticity, may be necessary for population persistence. Species with temperature-dependent sex determination may be particularly threatened by climate change, because altered temperatures could skew sex ratios. We experimentally tested nest-site choice in the long-lived turtle Chrysemys picta to determine whether nesting behaviour can compensate for potential skews in sex ratios caused by rapid climate change. We collected females from five populations across the species′ range and housed them in a semi-natural common garden. Under these identical conditions, populations differed in nesting phenology (likely due to nesting frequency), and in nest depth (possibly due to a latitudinal cline in female body size), but did not differ in choice of shade cover over the nest, nest incubation regime, or in resultant nest sex ratios. These results suggest that choice of nest sites with particular shade cover may be a behaviourally plastic mechanism by which turtles can compensate for change in climatic temperatures during embryonic development, provided that sufficient environmental variation in potential nest microhabitat is available.

Comments

This is a manuscript of an article from Biological Conservation 152 (2012): 90, doi: 10.1016/j.biocon.2012.03.019. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2012
Collections