Convergence in Nitrogen Deposition and Cryptic Isotopic Variation across Urban and Agricultural Valleys in Northern Utah

Thumbnail Image
Date
2016-09-14
Authors
Hall, Steven
Ogata, E.
Weintraub, S.
Baker, M.
Ehleringer, J.
Czimczik, C.
Bowling, D.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hall, Steven
Assistant Professor
Research Projects
Organizational Units
Organizational Unit
Ecology, Evolution and Organismal Biology

The Department of Ecology, Evolution, and Organismal Biology seeks to teach the studies of ecology (organisms and their environment), evolutionary theory (the origin and interrelationships of organisms), and organismal biology (the structure, function, and biodiversity of organisms). In doing this, it offers several majors which are codirected with other departments, including biology, genetics, and environmental sciences.

History
The Department of Ecology, Evolution, and Organismal Biology was founded in 2003 as a merger of the Department of Botany, the Department of Microbiology, and the Department of Zoology and Genetics.

Dates of Existence
2003–present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

The extent to which atmospheric nitrogen (N) deposition reflects land use differences and biogenic versus fossil fuel reactive N sources remains unclear yet represents a critical uncertainty in ecosystem N budgets. We compared N concentrations and isotopes in precipitation-event bulk (wet + dry) deposition across nearby valleys in northern Utah with contrasting land use (highly urban versus intensive agriculture/low-density urban). We predicted greater nitrate (NO3−) versus ammonium (NH4+) and higher δ15N of NO3− and NH4+ in urban valley sites. Contrary to expectations, annual N deposition (3.5–5.1 kg N ha−1 yr−1) and inorganic N concentrations were similar within and between valleys. Significant summertime decreases in δ15N of NO3− possibly reflected increasing biogenic emissions in the agricultural valley. Organic N was a relatively minor component of deposition (~13%). Nearby paired wildland sites had similar bulk deposition N concentrations as the urban and agricultural sites. Weighted bulk deposition δ15N was similar to natural ecosystems (−0.6 ± 0.7‰). Fine atmospheric particulate matter (PM2.5) had consistently high values of bulk δ15N (15.6 ± 1.4‰), δ15N in NH4+ (22.5 ± 1.6‰), and NO3− (8.8 ± 0.7‰), consistent with equilibrium fractionation with gaseous species. The δ15N in bulk deposition NH4+ varied by more than 40‰, and spatial variation in δ15N within storms exceeded 10‰. Sporadically high values of δ15N were thus consistent with increased particulate N contributions as well as potential N source variation. Despite large differences in reactive N sources, urban and agricultural landscapes are not always strongly reflected in the composition and fluxes of local N deposition—an important consideration for regional-scale ecosystem models.

Comments

This article is from Journal of Geophysical Research: Biogeosciences 121 (2016): 2340, doi: 10.1002/2016JG003354. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections