Campus Units

Ecology, Evolution and Organismal Biology

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

10-3-2018

Journal or Book Title

Proceedings of the Royal Society B

Volume

285

First Page

20181585

DOI

10.1098/rspb.2018.1585

Abstract

Developmental processes are foundational to clarifying the causes of convergent evolution. Here, we show how a key convergently evolving trait is slowly “acquired” in growing turtles. Adaptive morphological change tends to originate late in turtle ontogeny, owing to design constraints imposed by the shell. We investigated this trend by examining derived patterns of shell formation associated with the multiple (≥ 8) origins of shell closure (kinesis) in smallbodied turtles. Using box turtles as a model, we demonstrate that the flexible hinge joint required for shell kinesis differentiates gradually and via extensive repatterning of shell tissue. Disproportionate changes in shell shape and size substantiate that this transformation is a delayed ontogenetic response (3-5 years post-hatching) to structural alterations that arise in embryogenesis. These findings exemplify that the translation of genotype to phenotype may reach far beyond embryonic life stages. Thus, the temporal scope for developmental origins of adaptive morphological change might be broader than generally understood. We propose that delayed trait differentiation via tissue repatterning might facilitate phenotypic diversification and innovation that otherwise would not arise due to developmental constraints.

Comments

This is a manuscript of an article published as Cordero, Gerardo A., Kevin Quinteros, and Fredric J. Janzen. "Delayed trait development and the convergent evolution of shell kinesis in turtles." Proc. R. Soc. B 285 (2018): 20181585. doi: 10.1098/rspb.2018.1585. Posted with permission.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Published Version

Share

COinS