Campus Units
Ecology, Evolution and Organismal Biology
Document Type
Article
Publication Version
Published Version
Publication Date
2020
Journal or Book Title
Global Ecology and Biogeography
DOI
10.1111/geb.13092
Abstract
Aim: Nutrient enrichment is associated with plant invasions and biodiversity loss. Functional trait advantages may predict the ascendancy of invasive plants following nutrient enrichment but this is rarely tested. Here, we investigate (a) whether dominant native and non-native plants differ in important morphological and physiological leaf traits, (b) how their traits respond to nutrient addition, and (c) whether responses are consistent across functional groups.
Location: Australia, Europe, North America and South Africa.
Time period: 2007–2014.
Major taxa studied: Graminoids and forbs.
Methods: We focused on two types of leaf traits connected to resource acquisition: morphological features relating to light-foraging surfaces and investment in tissue (specific leaf area, SLA) and physiological features relating to internal leaf chemistry as the basis for producing and utilizing photosynthate. We measured these traits on 503 leaves from 151 dominant species across 27 grasslands on four continents. We used an identical nutrient addition treatment of nitrogen (N), phosphorus (P) and potassium (K) at all sites. Sites represented a broad range of grasslands that varied widely in climatic and edaphic conditions.
Results: We found evidence that non-native graminoids invest in leaves with higher nutrient concentrations than native graminoids, particularly at sites where native and non-native species both dominate. We found little evidence that native and nonnative forbs differed in the measured leaf traits. These results were consistent in natural soil fertility levels and nutrient-enriched conditions, with dominant species responding similarly to nutrient addition regardless of whether they were native or non-native.
Main conclusions: Our work identifies the inherent physiological trait advantages that can be used to predict non-native graminoid establishment, potentially because of higher efficiency at taking up crucial nutrients into their leaves. Most importantly, these inherent advantages are already present at natural soil fertility levels and are maintained following nutrient enrichment.
Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Language
en
File Format
application/pdf
Recommended Citation
Broadbent, Arthur A. D.; Firn, Jennifer; McGree, James M.; Borer, Elizabeth T.; Buckley, Yvonne M.; Harpole, W. Stanley; Komatsu, Kimberly J.; MacDougall, Andrew S.; Orwin, Kate H.; Ostle, Nicholas J.; Seabloom, Eric W.; Bakker, Jonathan D.; Biederman, Lori; Caldeira, Maria C.; Eisenhauer, Nico; Hagenah, Nicole; Hautier, Yann; Moore, Joslin L.; Nogueira, Carla; Peri, Pablo L.; Risch, Anita C.; Roscher, Christine; Schütz, Martin; and Stevens, Carly J., "Dominant native and non‐native graminoids differ in key leaf traits irrespective of nutrient availability" (2020). Ecology, Evolution and Organismal Biology Publications. 394.
https://lib.dr.iastate.edu/eeob_ag_pubs/394
Included in
Behavior and Ethology Commons, Biodiversity Commons, Plant Sciences Commons, Soil Science Commons
Comments
This article is published as Broadbent, Arthur AD, Jennifer Firn, James M. McGree, Elizabeth T. Borer, Yvonne M. Buckley, W. Stanley Harpole, Kimberly J. Komatsu et al. "Dominant native and non‐native graminoids differ in key leaf traits irrespective of nutrient availability." Global Ecology and Biogeography (2020). doi: 10.1111/geb.13092.