Campus Units

Ecology, Evolution and Organismal Biology

Document Type


Publication Version

Accepted Manuscript

Publication Date


Journal or Book Title

Global Change Biology




Oxygen (O2) limitation is generally understood to suppress soil carbon (C) decomposition and is a key mechanism impacting terrestrial C stocks under global change. Yet, O2 limitation may differentially impact kinetic or thermodynamic vs. physico-chemical C protection mechanisms, challenging our understanding of how soil C may respond to climate-mediated changes in O2 dynamics. Although O2 limitation may suppress decomposition of new litter C inputs, release of physico-chemically protected C due to iron (Fe) reduction could potentially sustain soil C losses. To test this tradeoff, we incubated two disparate upland soils that experience periodic O2 limitation—a tropical rainforest Oxisol and a temperate cropland Mollisol—with added litter under either aerobic (control) or anaerobic conditions for one year. Anoxia suppressed total C loss by 27% in the Oxisol and by 41% in the Mollisol relative to the control, mainly due to the decrease in litter-C decomposition. However, anoxia sustained or even increased decomposition of native soil-C (11.0% vs. 12.4% in the control for the Oxisol and 12.5% vs. 5.3% in the control for the Mollisol, in terms of initial soil C mass), and it stimulated losses of metal- or mineral-associated C. Solid-state 13C nuclear magnetic resonance spectroscopy demonstrated that anaerobic conditions decreased protein-derived C but increased lignin- and carbohydrate-C relative to the control. Our results indicate a tradeoff between physico-chemical and kinetic/thermodynamic C protection mechanisms under anaerobic conditions, whereby decreased decomposition of litter C was compensated by more extensive loss of mineral-associated soil C in both soils. This challenges the common assumption that anoxia inherently protects soil C and illustrates the vulnerability of mineral-associated C under anaerobic events characteristic of a warmer and wetter future climate.


This is the peer reviewed version of the following article: Huang, W., C. Ye, W. Hockaday, and S. J. Hall. "Tradeoffs in soil carbon protection mechanisms under aerobic and anaerobic conditions." Global change biology (2020), which has been published in final form at doi: 10.1111/gcb.15100. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Copyright Owner

John Wiley & Sons Ltd



File Format


Published Version