Campus Units

Ecology, Evolution and Organismal Biology

Document Type

Article

Publication Version

Published Version

Publication Date

2020

Journal or Book Title

Ecology

First Page

e03039

DOI

10.1002/ecy.3039

Abstract

Global change includes invasion by exotic (nonnative) plant species and altered precipitation patterns, and these factors may affect terrestrial carbon (C) storage. We measured soil C changes in experimental mixtures of all exotic or all native grassland plant species under two levels of summer drought stress (0 and +128 mm). After 8 yr, soils were sampled in 10‐cm increments to 100‐cm depth to determine if soil C differed among treatments in deeper soils. Total soil C (organic + inorganic) content was significantly higher under native than exotic plantings, and differences increased with depth. Surprisingly, differences after 8 yr in C were due to carbonate and not organic C fractions, where carbonate was ~250 g C/m2 lower to 1‐m soil depth under exotic than native plantings. Our results indicate that soil carbonate is an active pool and can respond to differences in plant species traits over timescales of years. Significant losses of inorganic C might be avoided by conserving native grasslands in subhumid ecosystems.

Comments

This article is published as Wilsey, Brian, Xia Xu, H. Wayne Polley, Kirsten Hofmockel, and Steven J. Hall. "Lower soil carbon stocks in exotic vs. native grasslands are driven by carbonate losses." Ecology (2020): e03039. doi: 10.1002/ecy.3039.

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Share

COinS