Campus Units

Agronomy, Ecology, Evolution and Organismal Biology

Document Type

Article

Publication Version

Published Version

Publication Date

5-2017

Journal or Book Title

Frontiers in Plant Science

Volume

8

First Page

730

DOI

10.3389/fpls.2017.00730

Abstract

Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a new filter needed in planning grassland restoration efforts. Potential responses of species to future climate conditions must also be considered in planning for long-term resilience. We demonstrate this methodology using a site-specific model and a maximum entropy approach to predict changes in habitat suitability for 33 grassland plant species in the tallgrass prairie region of the U.S. using the Intergovernmental Panel on Climate Change scenarios A1B and A2. The A1B scenario predicts an increase in temperature from 1.4 to 6.4°C, whereas the A2 scenario predicts temperature increases from 2 to 5.4°C and much greater CO2 emissions than the A1B scenario. Both scenarios predict these changes to occur by the year 2100. Model projections for 2040 under the A1B scenario predict that all but three modeled species will lose ~90% of their suitable habitat. Then by 2080, all species except for one will lose ~90% of their suitable habitat. Models run using the A2 scenario predict declines in habitat for just four species by 2040, but models predict that by 2080, habitat suitability will decline for all species. The A2 scenario appears based on our results to be the less severe climate change scenario for our species. Our results demonstrate that many common species, including grasses, forbs, and shrubs, are sensitive to climate change. Thus, grassland restoration alternatives should be evaluated based upon the long-term viability in the context of climate change projections and risk of plant species loss.

Comments

This article is published as Kane K, Debinski DM, Anderson C, Scasta JD, Engle DM and Miller JR (2017) Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change. Front. Plant Sci. 8:730. doi: 10.3389/fpls.2017.00730.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright Owner

Kane, Debinski, Anderson, Scasta, Engle and Miller

Language

en

File Format

application/pdf

Share

COinS