Comparative Performance of Single Nucleotide Polymorphism and Microsatellite Markers for Population Genetic Analysis

Thumbnail Image
Date
2009-09-01
Authors
Coates, Brad
Sumerford, Douglas
Miller, Nicholas
Kim, Kyung
Sappington, Thomas
Siegfried, Blair
Lewis, Leslie
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sappington, Thomas
Collaborating Professor
Research Projects
Organizational Units
Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Entomology
Abstract

Microsatellite loci are standard genetic markers for population genetic analysis, whereas single nucleotide polymorphisms (SNPs) are more recent tools that require assessment of neutrality and appropriate use in population genetics. Twelve SNP markers were used to describe the genetic structure of Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae) in the United States of America and revealed a high mean observed heterozygosity (0.40 ± 0.059) and low global FST (0.029). Pairwise FST estimates ranged from 0.007 to 0.045, and all but 2 populations showed significant levels of genetic differentiation (P ≤ 0.008). Population parameters and conclusions based on SNP markers were analogous to that obtained by use of microsatellite markers from the identical population samples. SNP-based FST estimates were 3-fold higher than corresponding estimates from microsatellites, wherein lower microsatellite FST estimates likely resulted from an overestimate of migration rates between subpopulations due to convergence of allele size (homoplasy). No significant difference was observed in the proportion of SNP or microsatellite markers loci that were nonneutral within populations. SNP markers provided estimates of population genetic parameters consistent with those from microsatellite data, and their low back mutation rates may result in reduced propensity for error in estimation of population parameters.

Comments

This article is from Journal of Heredity 100 (2009): 556, doi:10.1093/jhered/esp028

Description
Keywords
Citation
DOI
Copyright
Collections