Mass Balance of Metolachlor in a Grassed Phytoremediation System

Thumbnail Image
Supplemental Files
Date
2007-05-01
Authors
Henderson, Keri
Belden, Jason
Coats, Joel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Coats, Joel
Contingent Worker
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Entomology
Abstract

Metolachlor is a point-source pollutant at agrochemical dealerships in the Midwest, as well as a non point-source contaminant of surface waters caused by runoff. Prairie grasses have been used in filter strips to control runoff and are also useful for phytoremediation; however, little is known about the fate of metolachlor and its metabolites within a grassed system. Effects of uptake by prairie grasses on the formation and fate of degradation products are not known. In this study, [U-ring-14C]metolachlor was added to enclosed systems to determine the fate of the parent compound and its metabolites in soil and plants. Mineralization and volatilization were monitored over the 97 day study and found to be 1.05 and 0.2%, respectively, for vegetated systems. At the end of the study, soil and plant material was evaluated for the presence of parent metolachlor and selected metabolites, as well as bound residues. Metolachlor ethane sulfonic acid was the dominant metabolite in soil and plant tissue. Over 7% of applied radioactivity was taken up by the grasses, and plant uptake/metabolism appeared to be the main mechanism for phytoremediation of metolachlor. Vegetation significantly reduced the amount of metolachlor in soil by 9%, indicating potential success as a remediation tool.

Comments

Reprinted with permission from Environmental Science & Technology 41 (2007): 4084, doi:10.1021/es061691n. Copyright 2007 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2007
Collections