Degree Type


Date of Award


Degree Name

Doctor of Philosophy


Materials Science and Engineering

First Advisor

Alan M. Russell

Second Advisor

Karl A. Gschneidner


Efficient electricity transmission is a key component in all plans to increase the amount of renewable power used in the decades ahead. Prime solar and wind generation sites are usually distant from major population centers, resulting in the need for improved conductor wires that are stronger, lighter, and have better conductivity than conventional conductors. Deformation processed metal-metal composites (DMMCs) have a desirable combination of high strength and good conductivity. One such DMMC, aluminum-strontium, was investigated in this study. The composite wire was created by extrusion, swaging, and wire drawing of bundled Al and Sr wires. Intermetallic compound formation between Al and Sr is of particular interest to produce a strong, conductive wire with good high-temperature strength. Samples of swaged and drawn Al-Sr composite wire were heat treated at 483K, 513K, 543K and 573K to produce samples at varying stages of intermetallic compound formation. Resistivity measurements were taken from samples over a range of heat treatment times and temperatures to calculate the activation energy for Al-Sr intermetallic compound formation. Scanning electron microscopy, differential scanning calorimetry, and x-ray diffraction were used to investigate the changes in the microstructure occurring in the samples as a function of heat treatment. In addition, mechanical properties data were generated for pure Sr metal.


Copyright Owner

Andrew Elliott Frerichs



Date Available


File Format


File Size

123 pages