Improving the phase stability and oxidation resistance of β-NiAl

Thumbnail Image
Date
2011-01-01
Authors
Brammer, Travis
Major Professor
Advisor
Mufit Akinc
Matthew J. Kramer
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and Engineering
Abstract

This thesis is written in an alternate format. The thesis is composed of a general introduction, four original manuscripts, and a general conclusion. References cited within each chapter are located immediately after that section. In addition, figures and tables are numbered independently within each chapter.

The general introduction focuses on the driving force behind this research, and gives an overview of previous work done on nickel-based superalloys. Chapter 2 describes the preliminary experiments and how those experiments guided the rest of the thesis work. Chapter 3 deals specifically with the oxidation performance of platinum group metal (PGM) and hafnium modifications to β-NiAl intermetallic. Chapter 4 investigates the role of grain size on the oxidation resistance of NiAl based alloys. Chapter 5 focuses on the role of melting temperature on the oxidation resistance of NiAl based alloys. Chapter 6 summarizes the important results of this study.

Comments
Description
Keywords
Citation
Source
Copyright
Sat Jan 01 00:00:00 UTC 2011